

HAF-003-001618 Seat No. _____

Third Year B. Sc. (Sem. VI) (CBCS) Examination June / July - 2017

Mathematics: BSMT-603 (A)

	(Optimization & Numerical Analysis - II)	
	Faculty Code : 003 Subject Code : 001618	
Time : 2	$2\frac{1}{2}$ Hours] [Total Marks:	70
Instruct	tions: (1) All questions are compulsory. (2) Figures to the right indicate full marks.	
	wer the following objective type questions briefly in ranswer-book. Who invented the Simplex method to solve Linear Programming Problem? What is the meaning of the basic feasible solution of a linear programing problem? Name the method to find optimal solution of the transportation problem. While using Simplex Method to solve a Linear Programming Problem with the constraints of the type '<' new variables are introduced.	20
(5)	What is the full-form of LCM with respect to Transportation Problems ?	
(6)	If the Primal Linear Programming Problem is having an equation as a constraint then corresponding variable in the Dual Linear Programming Problem will	

- (7) The dual of the dual of any Linear Programming Problem is _____.
- (8) What is meant by degenerate basic feasible solution of a Linear Programing Problem ?

(9)	(9) What is unbalanced transportation problem? Expla						
	very briefly.						
(10)	If f(x) is a function defined over a convex set S, write						
	the	condition	unde	er which f(x) will be convex.			
(11)	Which formula is derived by taking $n = 3$ in general						
	quadrature formula ?						
(12)	Write name of any one method to interpolate data with						
	une	qual inte	rvals.				
(13)	Wha	at value o	of slop	is taken to derive modified Euler's			
	met	hod?					
(14)	Writ	te Gauss	forwa	rd interpolation formula.			
(15)	General quadrature formula is also known as						
(16)	Write general formula for improved Euler's method.						
(17)	Whi	ch metho	d is eq	quivalent to first order Runge-Kutta's'			
	met	hod?					
(18)	Write name of any one predictor and corrector method.						
(19)	Which method is an average of Gauss forward and						
	back	ward for	mulae	e ?			
(20)	Inte	rpolating	to ha	alves is a special case of			
	form	ıula.					
(A)	Atte	mpt any	Thre	ee :			
	(1)	Define	(i)	Feasible Solution of Linear			
				Programming Problem.			
			(ii)	Surplus Variable. (W.R.T. Linear			
				Programming Problem).			
	(2)	Define	(i)	Optimum Solution. (W.R.T. Linear			
				Programming Problem)			
			(ii)	Basic Variable. (W.R.T. Linear			
				Programming Problem)			
	(3)	Define	(i)	Extreme Point of a Convex Set.			
			(ii)	Convex Linear Combination.			

(4)

(5)

(6)

Problem.
Define

(i)

2

(ii) Convex Hull.

Convex Set.

State general mathematical form of Transportation

State general form of Linear Programming Problem.

(B) Attempt any Three:

(1) Obtain the **INITIAL** solution of given transportation problem using **LCM** method.

		Destination				Supply
		D_1	D_2	D_3	D ₄	Барріу
	O_1	19	14	23	11	11
Origin	O ₂	15	16	12	21	13
0	O ₃	30	25	16	39	19
Demand		6	10	12	15	43

- (2) Explain the steps of **Unit Cost Penalty Method** to find initial solution of Transportation Problem.
- (3) Explain the steps of the TWO PHASE method to solve the Linear Programming Problems.
- (4) Solve the following Linear Programming Problem using GRAPHICAL METHOD.

Maximize
$$Z = 6x_1 + 11x_2$$

Subject to the constraints

$$2x_1 + x_2 \le 104$$

$$x_1 + 2x_2 \le 76$$
 and $x_1 \ge 0, x_2 \ge 0$

- (5) Explain in detail steps of MODI method to solve the Transportation Problem.
- (6) Find ONLY BFS and construct ONLY FIRST TABLE to solve the following LPP using BIG M METHOD (complete solution is not required)

$$Minimize Z = 2x_1 + x_2$$

Subject to
$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

and
$$x_1 \ge 0, x_2 \ge 0$$

9

(C) Attempt any two:

(1) Explain steps of **Hungarian method** to solve the **Assignment Problem.**

(2) Find the **OPTIMUM** solution of given **ASSIGNMENT PROBLEM.**

		Men					
		I	II	III	IV	V	
	A	1	3	2	3	6	
	В	2	4	3	1	5	
Job	C	5	6	3	4	6	
	D	3	1	4	2	2	
	E	1	5	6	5	4	

(3) Obtain the **OPTIMUM** solution of given **Transportation Problem** using **MODI** method.

		Destination				
		W ₁	W_2	W ₃	W_4	Supply
u	F ₁	5 .	3	6	4	30
Origin	F ₂	3	4	7	8	15
	F ₃	9	6	5	8	15
Demand		10	25	18	7	60

(4) Obtain DUAL LPP of the following Primal LPP

Minimize
$$x_1 - 2x_2 \le 3$$

Subject to $7x_1 - 8x_2 + 4x_3 = 8$
 $x_1 - 2x_2 \le 3$
 $2x_2 - x_3 \ge 4$
 $x_1 \ge 0, x_2 \ge 0$

and x_3 is unrestricted in sign.

10

- (5) Explain relationship between **PRIMAL** Linear Programming Problem and its **DUAL** Linear Programming Problem in detail with example.
- 2 (A) Attempt any Three:

6

- (1) What is inverse interpolation? Write Lagrange's formula for inverse interpolation.
- (2) Show that the sum of Lagrange's coefficients is one for $x_0 = -1, x_1 = 1, x_2 = 2$
- (3) If $f(x) = x^3 2x$ then find f(2, 4, 9, 10).
- (4) Prove that the value of any divided difference is independent of the order of the arguments.
- (5) In usual notation prove that $D = \frac{1}{h} \left[\Delta \frac{1}{2} \Delta^2 + \frac{1}{3} \Delta^3 \frac{1}{4} \Delta^4 + \dots \right]$
- (6) Derive relation between, divided differences and forward differences.
- (B) Attempt any Three:

9

- (1) Explain Taylor series method to solve the differential equation .
- (2) If a, b, c, d are the arguments of $f(x) = \frac{1}{x^2}$ then find f (a, b, c, d).
- (3) For cubic polynomial if f(1)=2, f(1, 3)=13, f(1, 3, 6)=10, f(9)=730 then prove that $f(x)=x^3+1$.
- (4) By means of Lagrange's formula, prove that, $y_1 = \frac{-2}{10}y_{-5} + \frac{1}{2}y_{-3} + y_3 - \frac{3}{10}y_5$.
- (5) Explain Picard's method to solve the differential equation $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$
- (6) In usual notation rove that $D^2 = \frac{1}{h^2} \left[\nabla^2 + \nabla^3 + \frac{11}{12} \nabla^4 + \dots \right]$

(C) Attempt any Two:

- 10
- (1) Derive Gauss backward interpolation formula for central differences.
- (2) Derive Bessel's formula for central differences.
- (3) Derive Simpson's $\frac{1}{8}$ rule
- (4) Obtain Lagrange's interpolation formula for unequal intervals.
- (5) Explain Milne's Method to solve the differential equation $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$.